You are here

Blastemal progenitors modulate immune signaling during early limb regeneration

Authors: 
Tsai SL, Baselga-Garriga C, Melton DA
Citation: 
Development. 2019 Jan 2;146(1). pii: dev169128. doi: 10.1242/dev.169128
Abstract: 
Blastema formation, a hallmark of limb regeneration, requires proliferation and migration of progenitors to the amputation plane. Although blastema formation has been well described, the transcriptional programs that drive blastemal progenitors remain unknown. We transcriptionally profiled dividing and non-dividing cells in regenerating stump tissues, as well as the wound epidermis, during early axolotl limb regeneration. Our analysis revealed unique transcriptional signatures of early dividing cells and, unexpectedly, repression of several core developmental signaling pathways in early regenerating stump tissues. We further identify an immunomodulatory role for blastemal progenitors through interleukin 8 (IL-8), a highly expressed cytokine in subpopulations of early blastemal progenitors. Ectopic il-8 expression in non-regenerating limbs induced myeloid cell recruitment, while IL-8 knockdown resulted in defective myeloid cell retention during late wound healing, delaying regeneration. Furthermore, the il-8 receptor cxcr-1/2 was expressed in myeloid cells, and inhibition of CXCR-1/2 signaling during early stages of limb regeneration prevented regeneration. Altogether, our findings suggest that blastemal progenitors are active early mediators of immune support, and identify CXCR-1/2 signaling as an important immunomodulatory pathway during the initiation of regeneration.
Epub: 
Not Epub
Organism or Cell Type: 
Ambystoma mexicanum (axolotl)
Delivery Method: 
injection