You are here

A crucial role for hnRNP K in axon development in Xenopus laevis

Authors: 
Liu Y, Gervasi C, Szaro BG
Citation: 
Development. 2008 Sep;135(18):3125-35
Abstract: 
We report that hnRNP K, an RNA-binding protein implicated in multiple aspects of post-transcriptional gene control, is essential for axon outgrowth in Xenopus. Its intracellular localization was found to be consistent with one of its known roles as an mRNA shuttling protein. In early embryos, it was primarily nuclear, whereas later it occupied both the nucleus and cytoplasm to varying degrees in different neuronal subtypes. Antisense hnRNP K morpholino oligonucleotides (MOs) microinjected into blastomeres suppressed hnRNP K expression from neural plate stages through to at least stage 40. Differentiating neural cells in these embryos expressed several markers for terminally differentiated neurons but failed to make axons. Rescue experiments and the use of two separate hnRNP K MOs were carried out to confirm that these effects were specifically caused by knockdown of hnRNP K expression. For insights into the involvement of hnRNP K in neuronal post-transcriptional gene control at the molecular level, we compared effects on expression of the medium neurofilament protein (NF-M), the RNA for which binds hnRNP K, with that of peripherin, another intermediate filament protein, the RNA for which does not bind hnRNP K. hnRNP K knockdown compromised NF-M mRNA nucleocytoplasmic export and translation, but had no effect on peripherin. Because eliminating NF-M from Xenopus axons attenuates, but does not abolish, their outgrowth, hnRNP K must target additional RNAs needed for axon development. Our study supports the idea that translation of at least a subset of RNAs involved in axon development is controlled by post-transcriptional regulatory modules that have hnRNP K as an essential element.
Organism or Cell Type: 
Xenopus laevis
Delivery Method: 
Microinjection