You are here

Pharmacological induction of hypoxia-inducible transcription factor ARNT attenuates chronic kidney failure

Authors: 
Tampe B, Tampe D, Nyamsuren G, Klöpper F, Rapp G, Kauffels A, Lorf T, Zeisberg EM, Müller GA, Kalluri R, Hakroush S, Zeisberg M
Citation: 
J Clin Invest. 2018 Apr 17. pii: 89632. doi: 10.1172/JCI89632. [Epub ahead of print]
Abstract: 
Progression of chronic kidney disease associated with progressive fibrosis and impaired tubular epithelial regeneration is still an unmet biomedical challenge, because once chronic lesions have manifested, no effective therapies are available as of yet for clinical use. Prompted by various studies across multiple organs demonstrating that preconditioning regimens to induce endogenous regenerative mechanisms protect various organs from later incurring acute injuries, we here aimed to gain insights into the molecular mechanisms underlying successful protection and to explore whether such pathways could be utilized to inhibit progression of chronic organ injury. We identified a protective mechanism that is controlled by the transcription factor ARNT, which effectively inhibits progression of chronic kidney injury by transcriptional induction of ALK3, the principal mediator of anti-fibrotic and pro-regenerative BMP signaling responses. We further report that ARNT expression itself is controlled by the FKBP12/YY1 transcriptional repressor complex, and that disruption of such FKBP12/YY1 complexes by picomolar FK506 at sub-immunosuppressive doses increases ARNT expression, subsequently leading to homodimeric ARNT-induced ALK3 transcription. Direct targeting of FKBP12/YY1 with in vivo-morpholino approaches or small molecule inhibitors including GPI-1046 were equally effective to induce ARNT expression with subsequent activation of ALK3-dependent canonical BMP signaling responses and attenuated chronic organ failure in models of chronic kidney, but also cardiac and liver injuries. In summary, we report an organ protective mechanism, which can be pharmacologically modulated by immunophilin ligands FK506, GPI-1046 or therapeutically targeted by in vivo-morpholino approaches.
Epub: 
Yes
Organism or Cell Type: 
mice
Delivery Method: 
Vivo-Morpholino