You are here

CCN6 influences transcription and controls mitochondrial mass and muscle organization

Authors: 
Ganguly A, Padhan DK, Sengupta A, Chakraborty P, Sen M
Citation: 
FASEB J. 2023 Mar;37(3):e22815. doi: 10.1096/fj.202201533R
Abstract: 
Mutations in Cellular Communication Network Factor 6 (CCN6) are linked to the debilitating musculoskeletal disease Progressive Pseudo Rheumatoid Dysplasia (PPRD), which disrupts mobility. Yet, much remains unknown about CCN6 function at the molecular level. In this study, we revealed a new function of CCN6 in transcriptional regulation. We demonstrated that CCN6 localizes to chromatin and associates with RNA Polymerase II in human chondrocyte lines. Using zebrafish as a model organism we validated the nuclear presence of CCN6 and its association with RNA Polymerase II in different developmental stages from 10 hpf embryo to adult fish muscle. In concurrence with these findings, we confirmed the requirement of CCN6 in the transcription of several genes encoding mitochondrial electron transport complex proteins in the zebrafish, both in the embryonic stages and in the adult muscle. Reduction in the expression of these genes upon morpholino-mediated knockdown of CCN6 protein expression led to reduced mitochondrial mass, which correlated with defective myotome organization during zebrafish muscle development. Overall, this study suggests that the developmental musculoskeletal abnormalities linked with PPRD could be contributed at least partly by impaired expression of genes encoding mitochondrial electron transport complexes due to defects in CCN6 associated transcriptional regulation.
Epub: 
Yes
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection