You are here

hox13 genes are required for mesoderm formation and axis elongation during early zebrafish development

Authors: 
Ye Z, Kimelman D
Citation: 
Development. 2020;[Epub ahead of print] doi:10.1242/dev.185298
Abstract: 
The early vertebrate embryo extends from anterior to posterior due to the addition of neural and mesodermal cells from a neuromesodermal progenitor (NMp) population located at the most posterior end of the embryo. In order to produce mesoderm throughout this time, the NMps produce their own niche, which is high in Wnt and low in retinoic acid. Using a loss of function approach, we demonstrate here that the two most abundant hox13 genes in zebrafish have a novel role in providing robustness to the NMp niche by working in concert with the niche-establishing factor Brachyury to allow mesoderm formation. Mutants lacking both hoxa13b and hoxd13a in combination with reduced Brachyury activity have synergistic posterior body defects, in the strongest case producing embryos with severe mesodermal defects that phenocopy brachyury null mutants. Our results provide a new way of understanding the essential role of the hox13 genes in early vertebrate development.
Epub: 
Yes
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection