You are here

Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway

Authors: 
Wang H, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H
Citation: 
Development. 2021 Apr 28:dev.199441. doi: 10.1242/dev.199441. Online ahead of print
Abstract: 
The focal adhesion protein Kindlin2 is essential for integrin activation, a process that is fundamental to cell-extracellular matrix adhesion. Kindlin2 is widely expressed in mouse embryos, and its absence causes lethality at the peri-implantation stage due to the failure to trigger integrin activation. The function of kindlin2 during embryogenesis has not yet been fully elucidated as a result of this early embryonic lethality. Here, we showed that kindlin2 is essential for neural crest (NC) formation in Xenopus embryos. Loss-of-function assays performed with kindlin2-specific morpholino antisense oligos (MOs) or clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 techniques in Xenopus embryos severely inhibit the specification of NC. Moreover, integrin-binding deficient mutants of Kindlin2 rescued the phenotype caused by loss of kindlin2, suggesting that the function of kindlin2 during NC specification is independent of integrins. Mechanistically, we found that Kindlin2 regulates the fibroblast growth factor (FGF) pathway, and promotes the stability of FGF receptor 1. Our study reveals a novel function of Kindlin2 in regulating FGF signaling pathway and provides mechanistic insights into the function of Kindlin2 during NC specification.
Epub: 
Yes
Organism or Cell Type: 
Xenopus