You are here

KRas-transformed epithelia cells invade and partially dedifferentiate by basal cell extrusion

Authors: 
Fadul J, Zulueta-Coarasa T, Slattum GM, Redd NM, Jin MF, Redd MJ, Daetwyler S, Hedeen D, Huisken J, Rosenblatt J
Citation: 
Nat Commun. 2021;12:7180. doi:10.1038/s41467-021-27513-z
Abstract: 
Metastasis is the main cause of carcinoma-related death, yet we know little about how it initiates due to our inability to visualize stochastic invasion events. Classical models suggest that cells accumulate mutations that first drive formation of a primary mass, and then downregulate epithelia-specific genes to cause invasion and metastasis. Here, using transparent zebrafish epidermis to model simple epithelia, we can directly image invasion. We find that KRas-transformation, implicated in early carcinogenesis steps, directly drives cell invasion by hijacking a process epithelia normally use to promote death—cell extrusion. Cells invading by basal cell extrusion simultaneously pinch off their apical epithelial determinants, endowing new plasticity. Following invasion, cells divide, enter the bloodstream, and differentiate into stromal, neuronal-like, and other cell types. Yet, only invading KRasV12 cells deficient in p53 survive and form internal masses. Together, we demonstrate that KRas-transformation alone causes cell invasion and partial dedifferentiation, independently of mass formation.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection