You are here

Latrophilins are essential for endothelial junctional fluid shear stress mechanotransduction

Authors: 
Tanaka K, Prendergast A, Hintzen J, Kumar A, Chung M, Koleske A, Crawford J, Nicoli S, Schwartz MA
Citation: 
bioRxiv. 2020;[preprint] doi:10.1101/2020.02.03.932822
Abstract: 
Endothelial cell (EC) responses to fluid shear stress (FSS) are crucial for vascular development, adult physiology and disease. PECAM1 is an important transducer but earlier events remain poorly understood. We therefore investigated heterotrimeric G proteins in FSS sensing. Knockdown (KD) in ECs of single Gα proteins had little effect but combined depletion of Gαi and Gαq/11 blocked all known PECAM1-dependent responses. Re-expression of Gαi2 and Gαq but not Gαi1 and Gαi3 rescued these effects. Sequence alignment and mutational studies identified that K307 in Gαi2 and Gq/11 (Q306 in Gαi1/3), determines participation in flow signaling. We developed pull-down assays for measuring Gα activation and found that this residue, localized to the GPCR interface, determines activation by FSS. We developed a protocol for affinity purification of GPCRs on activated Gα's, which identified latrophilins (ADGRLs) as specific upstream interactors for Gαi2 and Gq/11. Depletion of latrophilin-2 blocked EC activation of Gαi2 and Gαq, downstream events in vitro, and flow-dependent vascular morphogenesis in zebrafish embryos. Surprisingly, latrophilin-2 depletion also blocked flow activation of two additional pathways activated at cell-cell junctions, Smad1/5 and Notch1, independently of Gα proteins. Latrophilins are thus central mediators of junctional shear stress mechanotransduction via Gα protein-dependent and -independent mechanisms.
Epub: 
Not Epub
Organism or Cell Type: 
zebrafish
Delivery Method: 
microinjection