You are here

Xenopus Dusp6 modulates FGF signaling precisely to pattern pre-placodal ectoderm

Authors: 
Tsukano K, Yamamoto T, Watanabe T, Michiue T
Citation: 
Dev Biol. 2022 May 19:S0012-1606(22)00097-5. doi: 10.1016/j.ydbio.2022.05.009. Online ahead of print
Abstract: 
Pre-placodal ectoderm (PPE), a horseshoe-shaped narrow region formed during early vertebrate development, gives rise to multiple types of sensory organs and ganglia. For PPE induction, a certain level of FGF signal activation is required. However, it is difficult to reproducibly induce the narrow region with variations in gene expression, including FGF, among individuals. An intracellular regulatory factor of FGF signaling, Dusp6, is expressed by FGF signal activation and inactivates a downstream regulator, ERK1/2, in adult tissues; however, its role in early development is not well known. Here, we reveal that Dusp6 is expressed in an FGF-dependent manner in Xenopus PPE. Gain- and loss-of-function experiments showed that Dusp6 is required for expression of a PPE gene, Six1, and patterning of adjacent regions, neural plate, and neural crest. To reveal the importance of Dusp6 in variable FGF production, we performed Dusp6 knockdown with FGF-bead implantation, which resulted in varying Six1 expression patterns. Taken together, these results suggest that Dusp6 is required for PPE formation and that it contributes to the robust patterning of PPE by mediating FGF signaling.
Epub: 
Yes
Organism or Cell Type: 
Xenopus laevis
Delivery Method: 
microinjection