You are here

Xenopus MBD3 plays a crucial role in an early stage of development

Authors: 
Iwano H, Nakamura M, Tajima S
Citation: 
Dev Biol. 2004 Apr 15;268(2):416-28
Abstract: 
DNA methylation plays a crucial role in gene silencing via recruitment of the proteins that specifically recognize methyl-CpG. In the present study, we have shown that two splicing isoforms of MBD3, xMBD3 and xMBD3LF, are the major methyl-CpG binding proteins in Xenopus eggs and early stage embryos. They were highly expressed in the eyes and central nerve system of tadpoles. Inhibition of the expression of xMBD3 by antisense oligonucleotides severely affected embryogenesis. Low-dose injection of antisense oligonucleotides specifically affected eye formation. An identical phenotype was observed on the forced expression of xMBD3 mutated in the methyl-CpG binding domain (MBD) and xMBD3LF, those of which lack methylated DNA binding activity. On the other hand, the eye-defective phenotype was not induced on the injection of truncated forms of mutant xMBD3 or xMBD3LF that contained MBD. We propose that MBD3, distinct from the case in mouse, plays a crucial role in the recognition of methylated genes as an intrinsic component of the complex to guide the corepressor complex during an early stage of Xenopus embryogenesis.
Organism or Cell Type: 
Xenopus
Delivery Method: 
Microinjection